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INTRODUCTION

The frequent use of the term ‘‘buckling’’ baffles
some of our friends in the engineering, metallurgical,
and chemical branches of our technology, just as we
reactor physicists are often perplexed by metallo-
graphic slides or by process stream terminology.

The barrier against the understanding of buckling is
partly semantic and partly mathematical. The first
difficulty arises from our careless use of the same
word for two fundamentally different concepts: geo-
metric buckling and material buckling. The second
arises from the fact that a concise and elegant treat-
ment of the subject involves the use of differential
equations. At the risk of being somewhat long-winded,
I am taking an “‘operational’’ approach to make the two
kinds of buckling plausible without higher mathematics.

The reader is presumed {o know that the neutrons
we are concerned with are set free as a result of nu-
clear fission inside a reactor, but perish after an
erratic journey by being caught in a nucleus, fissionable
or not, inside or outside the reactor.

1. The Multiplication Constant

When a neutron chain reaction continues at a con-
stant rate it is because enough of the neutrons horn in
a given number of unrelated fissions* survive compet-
ing hazards to give rise to the same number of new
fissions. This survival is threatened by two kinds of
accidents that may terminate the useful life of a nea-
tron prematurely. One is leakage from the reactor, the
other is non-productive absorption within the reactor.

The ratio of fissions in two successive related gen-
erations is called  k, the multiplication constant. If %
is less than one, the offspring are less numerous than
the progenitors and the fission rate declines with time.
If k2 is greater than one, fissions become more fre-
quent in time and the reactor power increases. Whether
a given type of lattice proposed by an engineer will
support a chain reaction within an enclosure of his
choice (i.e., whether or not % can be = 1) is a crucial
question that must be answered by the physicist before
the engineer gets involved in detailed design.

2. Leakage from the Reactor; Geometric Buckling

The answer depends, in part, on the amount of leak-
age of neutrons from the reactor. If the lattice were
infinite, there would be no leakage. Thus, it is conve-
nient to write 2 as a product of two terms, the multi-
plication constant of an infinite lattice of the proposed
composition, k., and the fraction of the neutron off-
spring that does not leak from the finite lattice. The
latter term depends on properties of the lattice and
also on the size and shape of the reactor. These de-
pendencies can, in fact, again be split into two separate
factors, one of which relates to the lattice only and the
other to the geometric shape only:. The first has to do
with the average distance traveled by a neutron in the
lattice from its place of birth to its place of death.
Only neutrons that are born near the surface can es-
cape from the reactor. Conversely, neutrons that are
born at a distance inside the surface of thereactor that
is substantially greater than the average traveling, or
‘“migration’’ distance within the lattice will not get to
the surface and, hence, will not leak out. Actually, the
first factor in the leakage term turns out to be the
average square of the distance traveled by the neutrons
during their life within the lattice, and is called the
migration area, M*. The greater M?, the greater is
the depth from which neutrons can leak and therefore
the greater is the total leakage from the reactor.

*For example,‘ in all fissions occurring within a given time
interval that is short compared to the lifetime of a neutron
in the reactor.
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The second factor entering into the non-leakage term
is related to the size and shape of the reactor, only. It
is possible to combine all pertinent information on size
and shape in a single expression. This turns out to
vary inversely as the second power of the characteris-
tic dimensions of the reactor. It is called the geomet-
ric buckling, Bg®. Formulae for the geometric buckling
of the simplest shapes are as follows:

2 Definition of
Shape Be Symbols
o 21 1 1 a, b, c=
Parallelepiped | = (217 A~ +?-) edges
Cylinder 7 /R + 2.405%/r2 k = height;
y = radius
Sphere 7 /R? R = radius

In principle, a B,® can be determined for any size
or shape. It is a purely geometric procedure. The
geometric buckling may be expressed in units of cm™2.
In practice, this unit is too large, and smaller units
are used. Some people use m~*(= 10"tcm™?), others
use 10~*cm™?, the microbuck.

It can be shown that the product of the two factors,
M? and B,®, represents the number of neutrons that
leak from the reactor for each neutron that dies within
the reactor. Hence, the fraction of all lost neutrons
that are lost through leakage is ’

M?B,*
14+ M*B £

and the fraction of neutrons that do not leak is

1
1 +Mng2
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The multiplication constant can now be written in the
form

ko
FEivaE s, ¥

Once the lattice and reactor size and shape are chosen,
the crucial question, whether or not %2 can be = 1, is
thus reduced to the determination of M? and k., both
of which are properties of the (infinite) lattice. M? can
be calculated or measured, more or less directly.
However, the evaluation of ke involves a number of
separate steps. These steps will be discussed in the
following section. After reading that section, the reader
may wish that the determination of M? and of all the
quantities entering k. be simplified and replaced by
a single concept and measurement. This wish will be
fulfilled when we get to the section on Material Buck-
ling.

K>I
K<

3. Suryival Inside the Reactor
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Not all of the neutrons that escape leakage from the
reactor contribute to the chain reaction by causing
fission. Many are captured in the non-fissionable
nuclei that make up the structural material, the mod-
erator and other substances present. Even when a
neutron is captured in a fissionable nucleus, there is a
fair chance that this nucleus will not undergo fission.
In that case, a neutron is withdrawn from the chain
reaction by the fuel itself.

The average number of neutrons created in a fission
event is designated by v, (= 2.43 for U®®). To arrive
at a value of k2, for a proposed lattice, this number v
must be multiplied by the probability that a neutron
will escape capture by a non-fissionable nucleus and
by the probability that a fissionable nucleus, having
captured the neutron, will undergo fission. The latter
probability is usually written as

1
1+ a

where « is the probability ratio, capture to fission, in
the fissionable nucleus.

Thus, ke = vx (capfure escape probability) X -1—1—01 .
Since both v and o are nuclear properties of the fuel
and not directly properties of the lattice, they are often
represented by a common symbol, the neutron repro-
duction factor: :

In lattices that contain no U®® or other resonance
absorbers, and in which the fuel is fully enriched ura-
nium, there is, in general, no appreciable capture until
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the neutrons have been slowed down from their initial
kinetic energy of some MeV to the ‘‘thermal”’ kinetic
energies of the lattice nuclei, the average of which is
about 0.025 eV. In this case, the capture-escape prob-
ability is therefore simply the fraction of thermal
neutrons that become available to the fuel or the ‘‘fher-
mal utilization’’ f. For each thermal neutron, (1-f)
neutron is absorbed by nuclei other than the fuel, and f
is absorbed by the fuel. Thus, in fully enriched lat-
tices, ko =70f.

The reactor physicist looks up 7 in a book supplied
by the ‘‘pure’’ nuclear physicist and calculates or
measures f, by considering the concentrations and the
appetites for neutrons (cross sections) of the various
nuclei in the proposed lattice.

If the lattice contains appreciable amounts of U**®,
the story of neutron survival becomes complicated by
two effects, A fast virgin neutron can produce afission
in the “‘non-fissionable”” U®*.! This results in a divi-
dend of extra neutrons. The calculation of this dividend
is complex and depends on the proximity of the nucleus
that undergoes fission to the U®® target and to the
moderator. To avoid writing a complicated formula,
this ‘‘fast fission effect” is usually accounted for by a
factor ¢ introduced into the expression for k..}

Even more involved is the other complication intro-
duced by U*®®. This nucleus captures appreciable
numbers of neutrons having a kinetic energy interme-
diate between that possessed by a neutronin the fleeting
moment of its virginity and that shared by the neutron
with the surrounding matter during its ‘‘thermal’’ life.
If the neutrons have a reasonable chance of interacting
with U®® before they are fully slowed down through
collisions with the moderator, there is a substantial
chance of their capture in the ‘‘resonances’’ of U**®,
This chance is designated by (1-p); and p is called
‘‘resonance escape probability’’.

A total description of the neutron life cycle in an
infinite lattice containing U®® can now be given as
follows: A fission produces v neutrons, these are
increased by the factor ¢ via fast fissions in U®*,
reduced before thermalization by the factor p through
resonance capture in U**®, reduced after thermalization
by the factor f through competing thermal capture in
non-fissionable nuclei, and reduced by competing ther-
mal capture in the fuel by the factor 1/(1 + d).

tTo cause fission in U*® a neutron must have kinetic ener-
gies above 1 MeV, The term ‘‘fissionable’ is commonly
applied only to nuclides that can be made to undergo fission
with thermal neutrons,

(€ -1) is the dividend rate accruing from fast fission,
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1
1+aqa

Thus, ko = vEDS
or, koo =Nepf . (2)

This is the famous ‘‘four-factor’’ formula for %,. The
thermal capture in the non-fissionable U*® is some-
times included in 7 rather than in f. Thus, the 7
used for natural uranium metal is usually not that of
U™® but a synthetic quantity that involves, besides the
ratio of cagture to fission in U®® g the ratio of capture
in 99.3% U™*® to fission in 0.7% U***.

By inserting (2) into (1) we obtain

k—M—T. (3)

1+Mng

To answer our crucial question, the reactor physi-
cist must evaluate, calculate or measure the geometric
buckling, the migration area M?, the neutron repro-
duction factor 7, the fast fission factor ¢, the ther-
mal utilization f, and the resonance escape probability
p. Actually, things are even more involved than de-
scribed here. For example, the distribution in energy
of the neutrons, the neutron spectrum, affects the
nuclear parameters that enter into 7.

e
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It appears that each new lattice requires a consider-
able number of calculations and/or measurements.
However, if there existed a single quantity that com-
bined M2, n, ¢, p and f, in such a way that the
crucial question could be answered quickly and directly,
only a single measurement might be needed. Fortun-
ately, there is such a quantity. It is the ‘‘material
buckling’’.

4. Material Buckling

Let us consider the case in which a reactor is pre-
cisely critical. In that case, the pile dimensions (B,")
are such that the particular combination of Bg? and of
the lattice parameters 7, €, p, f, and M?, that is
shown in equation (3) makes k=1, In that case, and
only then

1+M?B,” = nepf.

We may generalize this relation by introducing a
new concept, the ‘‘material buckling’’ B, ? such that
the equation

1+M?B, *= nepf

holds, no matter what %k is. Thus, B,? is merely
shorthand for
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epf-1
B,*=1 e (4)
B, * happens to be equal to B,® when k=1, but, in
general, it need not be.

By introducing this shorthand into equation (3) we
may now write the generally valid equation

- 1+M*B,°?
1+M°B,°

Our crucial question whether & is greater or equal to
1 can now be replaced by the equivalent question
whether B,* is greater or equal to B’ If Bn® is
greater than Be® & is greater than 1; if B,? = B,?,
k=1; if B,” islessthan B,%, k is less than 1.

This problem may be compared with the problem of

fitting a lady customer. If the dress (geometric buck-
ling) fits the lady (material buckling) the situation is
critical for the husband’s pocketbook. I the lady is too
small for the dress, the matter is inconsequential. If
she is too big, the experiment may result in an acci-
dent. ’

5. The Measurement of Material Buckling

We have seen that B, °, the material buckling, is a
certain combination of properties of the infinite lattice,
while Bg® the geometric buckling, is a property of the
surface enclosing the finite lattice. The concept of the
material buckling is attractive because it reduces the
criticality question to a simple comparison of B, 2 and
Bgz, quantities that are different in concept but are
similar in their physical dimensions (length %) and can
be expressed in the same units.

Material buckling is directly measurable, thereby
obviating separate determinations of M2 and of ‘the
factors entering kw. Of course, a more detailed
knowledge of reactor performance requires a variety
of information beyond the question of initial criticality.
Problems of reactor stability, reactivity lifetime, and
productivity depend on other combinations of the lattice
parameters discussed above, and on still other param-
eters. The reactor physicist measures, or calculates,
many things besides buckling.

Buckling measurements are made according to two
principal methods, in critical or in exponential facili-
ties.
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In the “critical” experiments, k is very precisely
made equal to unity, by equating the unknown material
buckling and the geometric buckling. In critical ex-
periments with liquid moderator it is possible to
achieve this equality by varying the geometric buckling
through adjustment of the liquid level. In situations
where the geometric buckling is fixed, the equality is
achieved by modifications of the material buckling of
the unknown lattice. This can be done by changing, by
known amounts, some or several of the reactor param-
eters that enter into B, ? (see equation 4). For exam-
ple, f (and M?) may be adjusted by the addition to the
reactor, or removal from the reactor, of poisons that
compete for neutrons with the fuel, e.g., by means of
control rods. In more sophisticated experiments, a
sample of the unknown lattice is inserted into a host
lattice of known material buckling, and the reactor is
adjusted to criticality. The material buckling of the
unknown can then be found by solving a setof equations.

In the ‘‘exponential’’ experiments, it is possible to
determine material buckling in a subcritical sample of
the lattice and therefore without recourse to geometric
buckling. Since this sample cannot maintain a chain
reaction, neutrons must be fed into the lattice. The
most common arrangement is a cylindrical sample
supplied by neutron sources arranged across the bot-
tom surface. (However, Fermi’s original exponentials
were parallelepipeds.) In such an arrangement, one
measures the distribution of neutrons throughout the
lattice. The rates at which the neutron population de-
creases as one proceeds away from the source, and as
one approaches the surfaces of the lattice; determine a
unique value of B, . In the conventional vertical tank,
it is usually sufficient to measure the radial neutron
distribution at one or two levels and the vertical neu-
tron distribution at one or two radii. A plot of neutron
density along a vertical axis may be fitted by exponen-
tial functions, hence the term ‘‘exponential”’ facility.

Once the material buckling is known, the critical
size of the lattice can be derived forany desired shape.
This is particularly helpful in problems of nuclear
safety in connection with the storage and handling of
many fuel pieces. For example, cylindrical fuel slugs
could be arranged in many different ways: like bamboo
sticks, like soldiers on the drilling ground, or in pyra-
mids like the cans in some grocery stores. From a
single material-buckling measurement in an exponen-
tial, the critical sizes of any of these configurations
can be evaluated, whereas the corresponding critical
measurements would require assemblies in each of
these configurations.

6. Semantics of Buckling

My dictionary defines the noun ‘‘buckle’’ as ‘“‘a dis-
tortion, as a bulge, bend, kink, or twist in a beam. . .”’,
all of which sounds akin to the problem of fitting the
lady customer.

Actually, buckling is related to an eigenvalue prob-
lem. The second-order differential equation that maps
out the shape of a string or of a membrane in an oper-
ating musical instrument involves the local inertia
(mass density) and tension of the string or membrane.
Solutions are subject to the condition that the ends of
the string or the edge of the membrane are in a fixed
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position. A similar differential equation uescribes tue
neutron density distribution in an operating reactor and
involves local lattice propertiesin a combination called
“‘buckling”’, as exemplified by our equation (4) defining
B, 2. The solutions are subject to the condition that
the flux must approach zero along the boundary of the
reactor. This is true only if the average buckling

assumes certain values (the eigenvalues) which involve .

s : s 2
the information entering into our Bg~.

II-B.l-s
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If the buckling is zero somewhere in an operating
reactor, the flux distribution is ‘‘flat’’ in this region,
that is, the flux changes with constant slope, for ex-
ample with zero slope. Where the buckling is positive,
the flux shape displays curvature and may have a peak,
where the buckling is negative there may be a flux
depression. So here is some analogy with the ‘‘distor-
tions or bulges’’ in the vibrating string or membrane.

To some of our colleagues, the word buckling is
repulsive. They prefer to talk about ‘‘the Laplacian’’,
which is not a fortunate choice as it confuses the con-
cepts of differential operator and of eigenvalue.

It was Professor J. A, Wheeler who introduced the
term “‘buckling’’ into reactor physics. In geometro-
dynamics, a branch of physics, in which Wheeler is a
leading pioneer, the material world is reduced to
geomelry.
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